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The k-core percolation on the Bethe lattice has been proposed as a simple model of the jamming transition
because of its hybrid first-order–second-order nature. We investigate numerically k-core percolation on the
four-dimensional regular lattice. For k=4, the presence of a discontinuous transition is clearly established but
its nature is strictly first-order. In particular, the k-core density displays no singular behavior before the jump
and its correlation length remains finite. For k=3, the transition is continuous.
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Since its introduction �1�, k-core percolation has been
proven to be relevant in a variety of contexts ranging from
glassy systems, to magnetic systems, to computer memory
storage �2,3�. The problem, also referred to as “bootstrap
percolation,” is defined as follows. The sites of a given lat-
tice are populated with probability p. Then each site with
fewer than k neighbors is removed, the procedure being iter-
ated until each site has at least k neighbors. The remaining
occupied sites are referred to as the k-core.

On regular lattices in dimension d, the model exhibits two
different behaviors depending on the value of k. If k�d, the
cluster must be extended in order to survive the culling pro-
cess but it is completely decimated for any p�1 in the large
size limit �4�. The behavior for large but finite system size
has also been investigated �5–8�, but strong disagreement
between the theoretical predictions and numerical simula-
tions has been found. The highly nontrivial origin of this
discrepancy was clarified only recently �9�. If k�d, it is easy
to realize that there are small “self-sustained” structures
�e.g., d-dimensional hypercubes� that can survive culling ir-
respective of their environment. In this case, the k-core al-
ways exists and the problem is rather whether it percolates or
not and what is the nature of the percolation transition �10�.

On the Bethe lattice, the k-core percolation transition is
known to be discontinuous �11�. Starting from high values of
p, the density of the k-core drops discontinuously to zero at
pc. The transition, however, is not simply first order; the
density near the transition is given by ��p����pc�+b�p
− pc�1/2. Furthermore, it was recently pointed out that the
transition is also accompanied by diverging correlation
lengths. This behavior has motivated the proposal of k-core
percolation as a model of the jamming transition �12,13�.
There is indeed evidence that this transition has a mixed
character �14�. The hybrid character of the transition was
also found for k-core percolation on complex networks �15�.

This has brought new interest into the question of whether
the hybrid nature of the transition in the Bethe lattice sur-
vives on other lattices in finite dimensions. This is certainly
not the case for cubic lattices in d�3. Indeed, for k=2 the
transition is continuous and has the same critical point of
ordinary percolation �16�. For k=3 and d=3, the transition is
continuous �11,17–19� with exponents consistent with those
of ordinary d=3 percolation �18�. These results are valid on
cubic lattices and they do not exclude the possibility of a

mixed transition for d�3 provided the structure of the lattice
or the constraints are different. Indeed, recently a two-
dimensional model with a mixed transition was exhibited
�20� and numerical evidence of a mixed transition in another
two-dimensional model was reported in �12�. As for regular
lattices, an expansion in powers of 1 /d has proven that turn-
ing on dimension perturbatively does not destroy the mixed
nature of the transition �10�, thus suggesting that the hybrid
transition may exist for some �d�3,2�k�d+1�. In this
work, we investigate numerically k-core percolation on the
four-dimensional hypercubic lattice. For k=3, we have found
a continuous transition and we did not further investigate the
critical behavior. In the case �d=4, k=4�, we find negative
results concerning the hybrid transition: while the presence
of a discontinuous transition is clearly established, it is
strictly first order. More precisely for k=4, at a critical value
pc=0.6885�5� the system has a phase transition from a high
p phase where there is a giant cluster with a finite density to
a low-p phase where there is not. The density of the giant
cluster is given by the k-core density minus the density �small
of the small clusters, where �small�0.04 near the transition,
therefore the critical properties of the giant cluster can be
safely extracted from the total density in the percolating
phase. The k-core density exhibits a discontinuous transition,
jumping from �c

+=0.567�4� to �c
−=0.044�2�. However, the

density displays no singular behavior at the transition, and
the correlation length extracted from k-core correlation func-
tion G�i , j�= ��i� j�− ��i��� j� �where �1 is 1 on the k-core and
0 otherwise �10�� remains finite, �c�10.

We started the numerical investigations considering hy-
percubic lattices with periodic boundary conditions �PBCs�.
As we will show, behavior with PBCs will enable us to ac-
cess a metastable regime that is quite different from the bulk
behavior.

We note that the data presented in this paper are always
for a single run at different sizes, i.e., a given realization of
the system. Indeed, due to time and memory constraints, few
lattices of the largest size �L=320� could be studied; how-
ever, we checked that the sample-to-sample fluctuations are
practically irrelevant to estimate the k-core density as soon as
we consider system sizes larger than L=32. For instance, the
inset of Fig. 4 clearly shows that the bulk density estimates
computed from hypercubes of different size L=100,
150,200 inside one sample do not show significant devia-
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tions. A good self-averaging behavior is also suggested by
the smoothness of the density curve on a single sample.

In Fig. 1, we plot the density of the k-core for a sample of
size L=320 with PBCs, corresponding to O�1010� sites. The
density of the k-core has a discontinuous transition at p̂
=0.6869, where it jumps from a high-density percolating
phase to a low-density non-percolating phase ��0.05. The
behavior appears to be consistent with a singular behavior at
the transition, but a careful study of the data in order to
extract the critical p and the exponent � shows some incon-
sistencies. Indeed, the curve seems to be fit at best with the
exponent �= 1

2 �the mean-field Bethe-lattice value� but with a
value of the critical probability p̂c�0.6862 definitively
lower than that at which the transition is actually observed,
i.e., p̂=0.6869. In order to assess whether this behavior can
be considered a finite-size effect, we investigated the k-core
spatial correlation function.

In Fig. 2, we plot the inverse correlation length � as a
function of p for the same sample; again the plot is appar-
ently consistent with a divergence of � at a value of p slightly
lower than the value at which the transition is actually ob-
served �marked with an arrow in Fig. 2�. In principle, this
could be a finite-size effect but the problem is that the value
of � at the actual transition is large ���8−10� but not com-
parable with the size of the system �L=320�. Actually, we
were not able to observe a correlation length bigger than ten
lattice spacings independently of the size of the system �up to
L=320�, and it seems highly unlikely that this divergence
drives the transition. These features made us suspect that the
actual mechanism driving the transition is not the divergence
of the correlation length but rather the nucleation of droplets
of the low-density phase. Due to the periodic boundary con-
ditions, these nucleation centers are originally absent in the
system but they appear as spatial fluctuations of the density

when the correlation length is sufficiently big leading to the
transition. We tested this idea by putting some nucleation
centers �i.e., empty hypercubes of size l� by hand in the
sample, and we checked that this procedure shifts the transi-
tion at higher values of p, although the size of the hyper-
cubes �l=20,40� is small with respect to the size of the sys-
tem and large with respect to the correlation length.
According to this interpretation, the percolating phase is un-
stable and can be observed only because nucleation centers
in finite-size systems with periodic boundary conditions are
extremely rare.

In order to assess the validity of this interpretation and to
determine whether there is a true percolation transition at
higher values of p, we considered systems with completely
empty boundaries. These boundary conditions guarantee that
the system is completely isolated from the outside. As a con-
sequence, the density at finite size is a lower bound to the
density in the thermodynamic limit. Furthermore, it turned
out that in this case numerical methods are rather safe for
extrapolating the behavior of the infinite system at variance
with the more delicate k�d case, where finite-size effects
are extremely large as mentioned above �9�. The possibility
of choosing these boundary conditions is a special feature of
the case k�d because otherwise no site can resist culling if
the boundaries of the hypercube are empty.

In order to estimate the density at a given value of p, we
generated lattices of increasing size. In Fig. 3, we plot the
results for the total density �L at various sizes L. The total
density �L is affected by the presence of the empty bound-
aries and is an increasing function of L. The observed mono-
tonicity property allows us to safely conclude from Fig. 3
that there is indeed a discontinuous transition in the large-L
limit. We also measured the bulk density, i.e., the density of
a smaller hypercube inside the sample whose boundaries are
far enough from the surfaces. The bulk density provides a
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FIG. 1. �Color online� k-core density vs probability with k=4
for a four-dimensional sample of size L=320 and periodic boundary
conditions. The arrow marks a discontinuous transition in the den-
sity that jumps to ��0.05 at lower values of p. The data are fit in
the region near the transition with the function ��p����p̂c�+b�p
− p̂c�1/2 but the actual transition probability p̂ �marked by the arrow�
is above the probability p̂c estimated from the fit. Inset: plot of p̂c

+ ���p�−��p̂c��2 /b2 near the transition as a function of p; the fitting
curve maps onto the line y=x.
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FIG. 2. �Color online� Inverse of the correlation length � vs
probability for the same sample as Fig. 1. The arrow marks the
point of the actual transition p̂=0.6869 on this finite-size realiza-
tion. Although the behavior is consistent with a divergence at p̂c

�0.6862, in all samples studied we never observed a correlation
length at the actual transition exceeding ��8−10, i.e., large but
much smaller than the sample size L=320. The vertical line marks
the value of the true critical probability pc=0.6885�5�; see text.
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direct estimate of the density in the thermodynamic limit and
strengthens the conclusion that there is a discontinuous tran-
sition; see Fig. 3. The transition probability decreases with
the sample size and tends to a critical value pc=0.6885�5�
that was estimated through extrapolation. We expect that the
interface between the low-density phase on the boundaries
and the high-density phase in the bulk penetrates more and
more in the sample for p→pc. As a consequence, in smaller
systems the transition will occur at higher values of p.

The percolation value pc=0.6885�5� is larger than the ac-
tual value of the transition in the case of periodic boundary
conditions, e.g., p̂=0.6869 for L=320. In Fig. 4, we plot the
bulk density and compare it with the density of the system in
the case of periodic boundary conditions. For p	 pc �marked
by a vertical line in the plot�, the two densities are equal and
we clearly see that the density in the case of periodic bound-
ary conditions is the analytic continuation of the percolating-
phase density in the unstable region. We also verified that the
correlation length of the bulk is the same as that of the sys-
tems with periodic boundary conditions at the corresponding
values of p; see Fig. 2. By looking at Figs. 4 and 2, we
immediately see that the density and correlation length are
regular at the estimated value of the real transition probabil-
ity pc=0.6885. In particular, using this value of pc we esti-
mate �c�2.5, while in the unstable phase we can observe �
up to ten lattice spacings.

The qualitative features of the finite-size effect in the case
of empty boundaries can be understood in the same way as in
thermodynamic first-order transitions, e.g., a ferromagnetic
Ising model in a small positive field with the spins on the
boundaries forced to be negative. As we noted above, the
critical transition probability is shifted to higher values of p,
and the true pc can be estimated through extrapolation �for
instance, for L=320 the transition is at pB=0.689; see Fig.
4�. In general, the finite-size corrections to the density should
scale as 1 /L, i.e..,

�L�p� = ��p� −
1

L
c1�p� + O	 1

L2
 , �1�

and Fig. 3 suggests that the factor c1�p� diverges at pc. This
factor is determined by the density profiles ��p ,z� at distance
z from an empty surface,

c1�p� = �
0




���p� − ��p,z��dz . �2�
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FIG. 5. �Color online� Probability vs inverse of the 1 /L correc-
tion c1 for different sample sizes. The data are consistent with a
divergence of the prefactors at the transition. Inset: probability at
which the total density is �=0.3��c as a function of the inverse of
the size of the sample; it tends to pc as the size of the system
increases.
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FIG. 3. �Color online� Bulk density and total density vs prob-
ability for different sample sizes. The average total density at a
given size is a lower bound to the bulk density because of the empty
boundary conditions.
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FIG. 4. �Color online� Density vs probability for a sample with
periodic boundary conditions and for the bulk of a sample with
empty boundary conditions with the same size L=320. The data and
the fit for periodic boundary conditions are the same as in Fig. 1.
The vertical line marks the estimated critical probability pc

=0.6885�5�. The two arrows mark the position of the actual transi-
tion probabilities. The transition with PBCs is in the unstable re-
gion; see text. Inset: magnified view of the bulk density near the
transition computed on internal hypercubes of various sizes �L
=100,150,200� inside a sample with L=320.
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Direct inspection of the profiles ��p ,z� shows that they are
consistent with a divergence at the transition, consistently
with the expectation that the transition is determined by the
penetration depth inside the sample of the interface between
the low-density and the percolating phases. The precise na-
ture of the divergence of c1�p� would require a more detailed
analysis, which goes beyond the scope of this work. In Fig.
5, we plot the behavior of the inverse of c1 and of the tran-
sition probability for different sample sizes from which pc
was estimated.

In conclusion, the density of the k-core in four dimensions
with k=4 exhibits a discontinuous transition at pc
=0.6885�5� from a high-density percolating phase to a low-
density nonpercolating phase. The transition loses its hybrid
character with respect to the Bethe lattice case: the density is
regular at the transition and the correlation length is finite.
These results are most clearly seen numerically considering
samples with empty boundary conditions. In finite-size sys-

tems with periodic boundary conditions, it is possible to fol-
low the percolating phase in the unstable region p� pc

=0.6885�5�. The behavior of the unstable phase is consistent
with an estimated pseudotransition at a lower probability
p̂c�0.6862. This pseudotransition appears to have a hybrid
character with pseudoexponent �= 1

2 and diverging correla-
tion length, but it cannot be observed because even for peri-
odic boundary conditions the unstable phase decays at p
� p̂=0.6869� p̂c through nucleation of low-density droplets
determined by spatial fluctuations of the density.

It would be very interesting to confirm these results
through analytical methods. Although the 1 /d expansion �10�
gives no hint about the observed disappearance of the mixed
transition, different approaches to perturbation theory around
the Bethe solution �21,22� may be able to see it, notwith-
standing the possibility that nonperturbative effects should
be taken into account.
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